3.1 Conceptos básicos de problemas de programación no lineal: Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto de variables reales desconocidas, con una función objetivo a maximizar, cuando alguna de las restricciones o la función objetivo no son lineales.
Una suposición importante de programación lineal es que todas sus funciones (función objetivo y funciones de restricción) son lineales. Aunque, en esencia, esta suposición se cumple para muchos problemas prácticos, con frecuencia no es así. De hecho muchos economistas han encontrado que cierto grado de no linealidad es la regla, y no la excepción, en los problemas de planeación económica, por lo cual, muchas veces es necesario manejar problemas de programación no lineal, lo cual vamos a analizar enseguida.
De la manera general el problema de programación no lineal consiste en encontrar:
X=(X1, X2, X3, X4, XN) para
Maximizar f(X), sujeta a
Gi(X)<= bi para i=1,2…..m,
Y X=>0,
Donde f(X) y gi(x) son funciones dadas de n variables de decisión.
3.2 Ilustración grafica de problemas de programación no lineal: Cuando un problema de programación no lineal tiene sólo una o dos variables, se puede representar gráficamente de forma muy parecida al ejemplo de la Wyndor Glass Co. de programación lineal, de la sección 3.1. Se verán unos cuantos ejemplos, ya que una representación gráfica de este tipo proporciona una visión global de las propiedades de las soluciones óptimas de programación lineal y no lineal. Con el fin de hacer hincapié en las diferencias entre programación lineal y no lineal, se usarán algunas variaciones no lineales del problema de la Wyndor Glass Co.
La figura 13.5 muestra lo que ocurre con este problema si los únicos cambios que se hacen al modelo de la sección 3.1 son que la segunda y tercera restricciones funcionales se sustituyen por la restricción no lineal 9x{ + 5x2 < 216. Compare las figuras 13.5 y 3.3. La solución óptima sigue siendo (a^ , x2) = (2,6). Todavía se encuentra sobre la frontera de la región factible, pero no es una solución factible en un vértice (FEV). La solución óptima pudo haber sido una solución FEV con una función objetivo diferente (verifique Z = 3xx + x2), pero que no necesite serlo significa que ya no se puede aprovechar la gran simplificación utilizada en programación lineal que permite limitar la búsqueda de una solución óptima para las soluciones FEV
Ahora suponga que las restricciones lineales de la sección 3.1 se conservan sin cambio, pero que la función objetivo se hace no lineal.
3.3 tipos de problemas de programación no lineal:
- Optimización no restringida.
- Optimización linealmente restringida.
- Programación cuadrática
- Programación convexa.
- Programación separable.
- Programación no convexa.
- Programación geométrica.
- Programación fraccional.
- Problema de complementariedad.
3.4 Optimización clásica puntos de inflexión y máximos y mínimos: La teoría de optimización clásica o programación matemática está constituida por un conjunto de resultados y métodos analíticos y numéricos enfocados a encontrar e identificar al mejor candidato de entre una colección de alternativas, sin tener que enumerar y evaluar explícitamente todas esas alternativas. Un problema de optimización es, en general, un problema de decisión.
Con el fin de ilustrar de forma adecuada la estructura y composición de un problema de optimización, introduciremos a continuación un sencillo ejemplo.
Ejemplo 1(Construcción de una caja con volumen máximo) Supongamos que queremos determinar las dimensiones de una caja rectangular de forma que contenga el mayor volumen posible, pero utilizando para ello una cantidad fija de material. El problema en forma abstracta se podría plantear en los siguientes términos Maximizar Volumen de la caja sujeto a Área lateral fija Con el fin de resolver este problema habrá que modelizarlo matemáticamente, es decir tendremos que expresarlo en términos matemáticos.
El primer paso para modelizar un problema de optimización es identificar y definir las variables que están implicadas en dicho problema, en este caso y puesto que estamos tratando de determinar el tamaño de una caja rectangular, la opción más clara es considerar como variables sus tres dimensiones rectangulares usuales (ancho, largo, alto) y que representamos con x, y, z. Con estas variables, la función para la que tenemos que encontrar el mejor valor será el volumen de la caja que puede expresarse como V (x, y, z) = xyz.
A continuación debemos tener en cuenta las limitaciones existentes sobre el material. Como este material se utiliza para construir las paredes de la caja, necesitaremos considerar el área lateral de la misma, y si la caja tiene tapa, dicha área será A (x, y, z)= 2(xy + yz + zx).
Por último, teniendo en cuenta que las dimensiones de la caja no pueden ser negativas el problema puede expresarse matemáticamente como Maximizar xyz sujeto a 2 (xy + yz + zx) = A x, y, z ≥ 0.
Fundamentos de Optimización
En este ejemplo se distinguen tres elementos fundamentales: las variables del problema, una función de esas variables y un conjunto de relaciones que deben cumplir las variables del problema. Estos elementos se repetirán en todos los problemas de optimización y se definen formalmente a continuación:
1.- Variables de decisión: El primer elemento clave en la formulación de problemas de optimización es la selección de las variables independientes que sean adecuadas para caracterizar los posibles diseños candidatos y las condiciones de funcionamiento del sistema. Como variables independientes se suelen elegir aquellas que tienen un impacto significativo sobre la función objetivo.
Representaremos las variables independientes se representarán mediante vectores columna de Rn x = x1 . . . + xn o vectores fila xt= (x1,...,xn) Aunque para los casos n = 1, 2 y 3 se emplearán las notaciones usuales de x, (x, y) y (x, y, z) respectivamente.
2.- Restricciones: Una vez determinadas las variables independientes, el siguiente paso es establecer, mediante ecuaciones o inecuaciones las relaciones existentes entre las variables de decisión. Estas relaciones son debidas, entre otras razones, a limitaciones en el sistema, a leyes naturales o a limitaciones tecnológicas y son las llamadas restricciones del sistema. Podemos distinguir dos tipos de restricciones:
(a) Restricciones de igualdad: Son ecuaciones entre las variables de la forma h (x) = h (x1,....xn)=0 donde g : A ⊆ Rn → R es una función real de variables reales definida sobre un conjunto A de números reales.
(b) Restricciones de desigualdad: Son inecuaciones entre las variables de la forma g (x) = g(x1,....xn) ≤ 0 donde A : C ⊆ Rn → R es una función real de variables reales definida sobre un conjunto A de números reales.
Observación: Solamente se han considerado restricciones de dos tipos: restricciones de igualdad del forma h (x1,....xn)=0 y restricciones de desigualdad de la forma g(x1,....xn) ≤ 0, debido a que siempre es posible, mediante una simple transformación, expresar el problema en términos de esta clase de restricciones.
Función objetivo: Finalmente, el último ingrediente de un problema de optimización es la función objetivo, también llamado índice de rendimiento o criterio de elección. Este es el elemento utilizado para decidir los valores adecuados de las variables de decisión que resuelven el problema de optimización. La función objetivo permite determinar los mejores valores para las variables de decisión. Independientemente del criterio seleccionado, dentro del contexto de la optimización matemática el adjetivo “mejor” siempre indica los valores de las variables de decisión que producen el mínimo o máximo valor (según el criterio utilizado) de la función objetivo elegida. Algunos de estos criterios pueden ser por ejemplo de tipo económico (coste total, beneficio), de tipo tecnológico (energía mínima, máxima capacidad de carga, máxima tasa de producción) o de tipo temporal (tiempo de producción mínimo) entre otros.
Puntos de Inflexión
Se define un punto de inflexión como el punto en que la función pasa de ser convexa a cóncava o de cóncava a convexa.
En la siguiente gráfica podemos ver que cuando x = 0, la gráfica pasa de ser cóncava a ser convexa, por lo que podemos decir que el punto de inflexión esta en X = 0.
No hay comentarios:
Publicar un comentario